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A Parabolic Load Balancing Method !

Alan Heirich & Stephen Taylor

Scalable Concurrent Programming Laboratory
California Institute of Technology

Abstract

This paper presents a diffusive load balancing method for scal-
able multicomputers. In contrast to other schemes which are provably
correct the method scales to large numbers of processors with no in-
crease in run time. In contrast to other schemes which are scalable the
method is provably correct and the paper analyzes the rate of conver-
gence. To control aggregate cpu idle time it can be useful to balance
the load to specifiable accuracy. The method achieves arbitrary accu- .
racy by proper consideration of numerical error and stability.

This paper presents the method, proves correctness, convergence
and scalability, and simulates applications to generic problems in com-
putational fluid dynamics (CFD). The applications reveal some useful
properties. The method can preserve adjacency relationships among
elements of an adapting computational domain. This makes it use-
ful for partitioning unstructured computational grids in concurrent
computations. The method can execute asynchronously to balance a
subportion of a domain without affecting the rest of the domain.

Theory and experiment show the method is efficient on the scal-
able multicomputers of the present and coming years. The number
of floating point operations required per processor to reduce a point
disturbance by 90% is 168 on a system of 512 computers and 105 on -
a system of 1,000,000 computers. On a typical contemporary raulti-
computer [19] this requires 82.5 us of wall-clock time. »

1The research described in this report is sponsored primarily by the Advanced Re-

search Projects Agency, ARPA Order number 8176, and monitored by the Office of Naval
Research under contract number N00014-91-J-1986.



1 Introduction

The scale of scientific applications and the computers on which they run is
growing rapidly. Disciplines such as particle physics and computational fluid
dynamics pose numerous problems which until recently have exceeded the
memory and cpu capacities of existing computers. Moreover these disciplines
appear ready to pose new problems which exceed the capacities of the largest
computers that will be built in this decade. The Grand Challenges represent
a set of problems solvable by computers with TeraFlops (10°) performance.
If present trends continue these will be supplanted within a decade by a set
of challenges requiring PetaFlops (10'*) performance.

This increase in problem size is made possible by the dramatic reductions
in size and cost of VLSI technology and parallel computing. Currently our
research in computational fluid dynamics uses scalable multicomputers with
roughly 500 processors [19, 23, 24]. Research efforts are underway to develop
within three years time scalable multicomputers with hundreds of thousands
of functional units [16, 21]. These trends suggest that limits to the growth
of scientific computing are more likely to be determined in the next several
years by sofllware technology than by hardware limitations. -

A potentially limiting software technology is the class of methods to solve
the load balancing problem. Most numerical algorithms require frequent syn-
chronization. If a load distribution on a multicomputer is uneven then some
processors will sit idle while they wait for others to reach common synchro- -
nization points. The amount of potential work lost to idle time is proportional
to the degree of imbalance that exists among the processor workloads. Since
this loss also increases with processor count it can be valuable to control the -
accuracy of the resulting balance and to trade off the quality of the balance
against the cost of rebalancing.

This paper presents a load balancing method for mesh connected scalable
multicomputers with any number of processors. The method can balance the
load to an arbitrary degree of accuracy. Theory and experiment show the
method is inexpensive under realistic conditions. While it is effective on con-
temporary systems with under 1,000 processors it is specifically intended to
scale to systems with tens and hundreds of thousands of processors. The
total wall clock time for the method decreases as the processor count in-
creases. The method was developed to solve the dynamic (run time) load
balancing problem. It has also proven useful for cases of static (initial load
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time) balancing.

The method assumes the computation is sufficiently fine grained that
work can be treated as a continuous quantity. This is reasonable in an
application domain like computational fluid dynamics in which units of work
represent grid points in a simulation. Lach processor is typically responsible
for thousands of grid points and can exchange individual points with other
Processors.

Cybenko [6] has published a method which is similar in several respects
to this one. He proves asymptotic convergence of an iterative scheme on
arbitrary interconnection topologies. Two other articles have appeared more
recently on diffusive load balancing methods. Boillat [4] demonstrates poly-
nomial convergence on arbitrary interconnection topologies using a Markov'
analysis. Horton objects to the polynomial convergence demonstrated in
[4] and the lack of bounds on accuracy in the previous work. He applies
a multigrid concept [11, 14] to accelerate convergence of a simple diffusive
scheme.

The method presented in this paper, while developed independently, re-
sembles a special case of Cybenko’s method restricted to mesh connected
topologies. It differs from Cybenko’s method with regard to issues of numer-
ical stability. The objections in [11] lack rigor. This paper refutes them via
formal demonstrations of convergence rates, accuracy, and scaling. These
results show that convergence is rapid, accuracy is limited only by machine

precision, and superlinear speedup can be achieved for cases of practical in-
terest in CFD.

2 A Parabolic Model

A number of articles have proposed solutions to the load balancing problem
in recent years (2, 5, 10, 12, 13, 15, 17, 18, 22]. Many of thesc solutions are
reliable and efficient for computer systems with small numbers of processors.
Unfortunately many of them do not scale well to systems with large numbers
of processors. It is well known that in a scalable algorithm the amount of work
performed in parallel grows more rapidly than the amount of work performed
in the serial part of the calculation as the size of the problem increases [1, 9].
Scalable algorithms tend to be highly concurrent and this fact often makes it
difficult to prove that they are correct. A load balancing method for scalable



multicomputers should be scalable but should not sacrifice reliability.

It is worth noting that a class of random placement methods have been
proposed for scalable multicomputers [2, 10]. These methods are scalable
and are reliable under the assumption that disturbances occur frequently
and have short lifespans. These assumptions do not hold in a domain like
CFD where disturbances arise occasionally and are long lasting. As a result
we are unable to take advantage of the rewards these methods offer.

A method is reliable if it can be shown to compute a correct solution
within a predictable number of steps. The simplest reliable load balancing
method collects load statistics from all processors, computes the average load,
and broadcasts the average to all processors. Each processor then exchanges
work with it’s neighbors so that the new workloads equal this average. Un-
fortunately this simplest method is not scalable because it is inherently serial.
The number of terms in the calculation of the average load is proportional
to the number of processors in the computer system. Although this cost can
be made logarithmic with an octree data structure there is a more severe
cost associated with interprocessor communication. The current state of the
art in mesh routing technology requires a nonconflicting communication path
for each message. The opportunities for path conflicts known as “blocking
events” increase factorially with the number of processors in the computer
system. This simplest reliable method is not scalable because the time lost

- to blocking events can grow factorially with the size of the computer system.

A method is scalable if it can run efficiently on computer systems with
very large numbers of processors. Due to the effects of Amdahl’s law [1]
most scalable methods are concurrent algorithms in which the computation
is distributed among the processors in the computer system. What these
methods gain in scalability they often lose in reliability because they lack
formal proofs of correctness and convergence. ‘

As one example of the problems which can arise in concurrent algorlthms
consider a simple concurrent method in which each processor adjusts it’s load
to equal the average of the loads at it’s immediate neighbors. This method is

- distributed and scalable and is easily seen to be convergent. Unfortunately it
is well known that it converges to solutions of the Laplace equation V2® = 0.
This equation is known to admit sinusoidal solutions which are not equilibria.
As a result this method, although scalable, is not reliable.

This paper leverages existing numerical and analytic techniques to derive
a reliable and scalable load balancing method. The method is based on
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properties of the parabolic heat equation u; — aV?u = 0. The heat equation
describes a process in nature whereby thermal energy diffuses away from hot
regions and into cold regions in a volume until the entire volume is of the
same temperature. A literal interpretation of the terms in the heat equation
reads that the rate of change in tcmpcrature u at each point in the volume
is determined by the local curvature VZu times a diffusion rate a. This
paper applies finite difference techniques to derive an unconditionally stable
discrete form of this equation, and uses a scalable iterative method to invert
the resulting coefficient matrix. The end result is a concurrent load balancing
method which is scalable, reliable and efficient.

3 A Parabolic Algorithm

The algorithm consists of a simple arithmetic iteration which is performed
concurrently by every processor in the multicomputer. Each step of the
iteration requires 7 floating point operations at each processor. The iteration
calculates an expected workload at each processor. Processors periodically
exchange units of work with their immediate neighbors in order to make their
actual workload equal to this expected workload. The algorithm contains
parameters which control the accuracy of the resulting solution.. In many -
applications an accuracy of 10% is sufficient. In these cases only 24 iterations
are required to reduce a point disturbance by 90% regardless of the size of the .
multicomputer. This paper presents the algorithm for a three dimensional
mesh. The reduction to two dimensions is described in the discussion section.

3.1 Initialization

Specify the accuracy a desired in the resulting equilibrium. For example, to
balance to within 10% choose o = 0.1. Determine the interval » at which
processors will exchange work with their immediate neighbors according to-

the formula |
no
v= [ln_“‘rl 21 (1)

146
Note that in the interval 0 < a < 1 v is less than or equal to 3:




0 < a <0.0445
0.0445 < o < 0.622
0.622 < o < 0.833
0833 <«

DN W N

3.2 Execution

At every processor z,y,z adjust the workload u,,, , as follows:

0 _
u:(v,g)/,z = Uzy,z

for m=1 to v

u(® @
m —_ T,Y,2 (m—l) (m—
ua(v,y),z - 1+ 6o + (1 + 6a) (u$+1,y,z + Ug—1,

(m-1) (m~1) (m-1) (m-1)
uz,y+1,z + u:c,y—l,z + ux,y,z+1 + uac,y,z—l

et 2)

endfor
Exchange (ug‘?hz - u’(")) « units of work with every neighbor v'.

—— v
Uzy,z = ugz,z)/,z

Repeat these steps until reaching equilibrium. Much of the following
analysis will be concerned with formulating an exact statement of the number
of repetitions required to reach equilibrium. The motivation behind this
analysis is to support claims of correctness, convergence, and accuracy. The
analysis develops a theory of convergence for any disturbance and applies
this to the specific case of a point disturbance. Analysis appears to be less.
practical in many cases than conservative estimates derived from simulations.
Following the analysis this paper presents simulations from cases of interest

in CFD and distributed operating systems. The paper concludes with a
summary and discussion.

4 Reliability and Scalability

This section demonstrates reliability of the method by showing that for any
initial disturbance every component of the disturbance vanishes at an expo-
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nential rate. It demonstrates scalabilty by defining a lower bound on this rate
as a function of a, n. Tt applies the resulting theory to the case of a point dis-
turbance and demonsirates that weakly superlinear speedup can be achieved

under realistic assumptions. The appendix contains technical derivations in
support of this analysis.

ACCURACY OF THE JACOBI ITERATION

Since the algorithm is intended to obscrve strict accuracy of O(«) it is im-
portant to verify that each stage of the algorithm observes this accuracy.
The justification of accuracy for the finite difference equation is given in the
appendix. The accuracy of the coefficient matrix inversion can be verified by
analyzing the spectral radius of the Jacobi iteration. .

From the GerSgorin disc theorem [7] the eigenvalues X of (2) are bounded
[A] < 1785 Since the row and column sums are constant and the iteration
matrix is nonnegative ([7], theorem 8.1.22) the spectral radius equals the row
sum

6a
DIT) = — 3
p(D7'T) 1+ 6a 3)
Define the error in a current value #{™) under the iteration (2) as e(&'(m)) =
(@(™) — i*) where @* is the fixed point of the Jacobi iteration. Then for v > 0

e(@®) = e((D7'T)"a®) = (D7 T e(i®) (4)

which converges when p(D™'T) < 1 since p((D™'T)") = (p(D'T))*. In
order for the algorithm to correctly reduce the error it is necessary to compute
the desired load at each time step to an appropriate accuracy. In order to
quantify the error define the infinity norm

e(u(m)

Y2

wl™

le@E™)lloo = max

= max
TyY,2

Using this norm define a necessary condition to improve the accuracy of the
solution @ by a factor « in v steps to be ||e(i@™)||o < a]|e(d?)]|co. From (4)
this is satisfied when (p(D7'T))” < o and thus (1)

=[] - [m ©

146a

The method is unconditionally stable and the cost of this stability is small

(in fact it is free for 0.833 < o < 1). This suggests the possible use of large
time steps to deal with worst case disturbances.
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ELAPSED TIME FOR THE DIFFUSION

This section determines the number of artificial time steps 7 required to
reduce the load imbalance by a factor a. It does this by considering the
eigenstructure of the finite difference equation (22) which is rearranged to
express the change in load with each iteration

Ugy o (t+ dt) — Ugy (1) = @ [ugyry,: (T + dt) + ug_1,y,.(t + di)
+u:z:,y+1,z(t + dt) + uz,y—l,z(t + dt)
+u.’c,y,z+1 (t + dt) + ux,y,z—l(t + dt)

_6ux,y.2(t + dt)]

or as a vector equation with matrix operator L
d(t + dt) — i(t) = oLa(t + dt) (6)

Any load distribution #(¢) can be written as a weighted superposition of

eigenvectors & of L
(t) =3 aik(t)Zi5
4,k
Using this fact rewrite the vector equation (6) as

Do aiik(t+ )Tk — Y aijr(t)Tije = a Y Laija(t + d)Tise (1)

i,k ik ik
Using the definition of LiZ; ; x and the eigenvalues of L
L&k = = XijnTign
Aok =2 [3 — cos (2m'/n1/3) — cos (27rj/n1/3) — cos (27rk/n1/3)] - (8)
(7) can be further simplified to

D (@igr(t + )&k [L+ odijs] — aijr(t)Tije) = 0
1,9,k

and by the completeness and orthonormality of the eigenvectors
aij(t + dt) [L+ adijx] — aiu(t) = 0

_ai;x(0)
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It is apparent from equation (9) that convergence of the individual com-
ponents is dependent upon the eigenvalues A; ;. Reducing the amplitude
of an arbitrary component ¢,j,k by « in T steps of the method requires
[1+aXijx]™" < a. The worst case occurs for the smallest positive eigen-
value Aop1 = (2 — 2cos(2x/ nt/ 3)) which corrcsponds to a smooth sinusoidal
disturbance with period equal to the length of the computational grid. To
reduce such a disturbance requires
-1
Ina ] (10)

In [1+a(2—2008n%%)]

T =

Convergence of this slowest component approaches In ™! for large n since

-Jlrgoln[l+a(2—2cos&r—)] =1

nl/3

Convergence of highest wavenumber component Am1/3)f2—1,(m1 12) [2-1,(n1/3) J2—1
is rapid because

= [111 T e)a]] (1)

ANALYSIS OF A POINT DISTURBANCE

This section considers a specific case of a point disturbance and derives an
~ inequality relating 7,7 and .. The purpose in doing this is to provide an exact
prediction of convergence of a known case in order to demonstrate scaling
properties. The procedure followed is to describe the initial amplitudes of the
components of the disturbance and then solve an inequality which describes.
the magnitude of the disturbance over time. A periodic domain'is assumed
for the purpose of analysis. Simulations presented later in this paper verify
that convergence is similar on aperiodic domains. -

The following text uses the Poisson bracket (-,-) to represent the inner
~product operator. When discussing loads or eigenvectors it uses @[z,y;z]
or &;;x[z,y,2] to denote the vector element which corresponds to location
z,y, z of the computational grid with the convention that [0,0, 0] is the first
element of the vector. Then the initial disturbance confined to a particular
processor z,y,2 can be written as a superposition of eigenvectors of L

4(0) = > a1mn(0)Z1mn : (12)

l,m,n



Assume the initial disturbance u(0) to be zero at every element except
[z,v, z]. Then

(%, k, €(0)) = Zi5ilz,y, ] (13)

This is equal to the initial amplitude a; ;£(0) of each eigenvector Z; ; 1

(-’E‘z’J’k,ﬁ(O)> = <5i1j1k7 Z al,m,n(o)fl,m,n>

IR %)

= Y (Zij> Bramm) Gmn(0)

l,m,n

= > aymn(0)8ujmben

lm,mn
= a;;k(0) (14)

The computational domain has periodic boundary conditions and as a result
the origin of the coordinate system is arbitrary. Without loss of generality
place the origin at the source of the disturbance and take z = y = z = 0.
This has no effect on the eigenvectors Z; ;x and from (13), (14)

ai,5k(0) = &:,3,£[0,0,0] (15)
Placing the origin at the source of the disturbance is particularly convenient

when we consider the first element of the eigenvectors 7;;4[0,0,0]. L has

(nl/ 3) /2 distinct eigenvalues A; ;x each of algebraic multiplicity two. Each
of these eigenvalues has geometric multiplicity eight, ie. has eight linearly
independent associated eigenvectors of unit length

Tijklz,y, 2] = ciji by (27rwi/n1/3) F (27ryj/n1/3) F3 (27rzk/n1/3) - (16)

where each Fj is either sin or cos. By choosing ¢ = y = z = 0 this expression
(16) is zero except for the single eigenvector for which Fy(z) = Fy(z) =

F5(z) = cos(z). Without loss of generality restrict further consideration to
initial disturbances of the form

U’[O> 0, 0](0)_ = Z Ci,j,kifi,j,k[o, 0, 0] = E c?,j,k (17)
4,5,k 4k
From (9) define the time dependent disturbance at any location «’,y’, 2’ -

dlz’,y’, 2(1dt) = Y cijrll 4+ ol Fijales v, 2]
1,7,k



T(a,n) n (total processors)
| 64 512 4,096 8000 32K 256K  10°
0.1 7 6 8 5 5 5 5
a 001 | 152 213 229 173 157 145 141
0.001 | 2,749 5,763 10,031 10,139 9,082 7,561 7,003

Table 1: Solutions to equation (20) for increasing processor count n and
accuracy «. T represents the number of exchange steps in the method. See

figure 1.

= Dociin[l+ aXijx]™ cos (27m:'z'/n1/3)

ik
cos (27ry’j/n1/3) cos (27rz’k/n1/3) (18)

The appendix demonstrates that ¢; ;x = (8/n)*/? and thus the disturbance is

a summation of equally weighted eigenvectors. From (17) and (18) the time
dependent disturbance at 0,0,0 is therefore

. 8 27e 27y 2rk\1""
%[0,0,0](7d¢t) = - 22}% |:1 + a2 (3 008 jy5 €08z — o9 m)]
(19)

Solving 4[0,0,0](7dt) < « yields

8 271 27y 2rk\1™"
;ijk[1+a2(3—cosm—cosn——cosmg)} <a (20)

where i, j, k are indexed from 0 to (n1/3) /2—1and thecasei =3 =k =0
is omitted.

Table 1 and figure 1 present solutions of the inequality (20). These are
exact predictions of the number 7 of exchange steps which must occur to
reduce a point disturbance by a factor a on a periodic domain. Figures 2
and 3 are simulated results for two CFD cases. The first case of partitioning
- an unstructured grid is a point disturbance. In the simulation 7 is observed to
match the theoretical prediction exactly. The second case of rebalancing after
a grid adaptation demonstrates the value of estimating 7 from simulations.
The initial disturbance is not a point and the simulation is observed to require

170 exchange steps before the worst case discrepancy drops to 10% of it’s
original value.
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Scaled exchange steps (tau*alpha) versus multicomputer size (n)
T T T T T T

11 T

10 -

0 L L L 1 L I L

o 4096 8192 12288 16384 20480 24576 28672 32768
Number of processors (n)

Figure 1: Scaled number of exchange steps Ta to achieve accuracy « for var-
ious n, o following a point disturbance. See table 1 and equation (20). Each
line is scaled by o. All lines are initially increasing for small n and asymp-
totically decrcasing for larger n demonstrating weak superlinear speedup.

Pertition 1,000,000 point qgrid on 512 Rebalance 1046 processors after 100% increase in grid demsity
T T T 100 T T T T

alpha=0.1,n=512 — alpha=0.1,n=1046 ~-=

100000

80000 -

60000 |

40000 |

20000

a s 1 s 0 2 L : 1
[ 34.375 68.75 103,125 13715 17.875 0 137.5 275 . 412.5 550 687.5
Wall clock time (microseconds) Wall clock time (microseconds)

Figurc 2: Time course of disturbances for simulated CI'D cases. Left: largest
discrepancy among 512 processors partitioning an unstructured computa-
tional grid. The initial disturbance of 1,000,000 points confined to a single
processor is reduced by 90% after 6 exchanges (20.625 us) in exact agree-
ment with theory ( 7(0.1,512) in table 1). Right: largest discrepancy among
1,000,000 processors rebalancing a disturbance following a bow shock adap-
tation. @ = 0.1,» = 3 in both cases. Wall clock times assume a 32 MHz
J-machine. The interval between exchange steps is 3.4375 us.
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5 Simulations

This section presents simulations of three cases in which the method is use-
ful. The first case is a bow shock resulting from a million grid point CFD
calculation [23]. The disturbance dissipates rapidly and is nearly gone after
10 exchange steps. The second case computes an initial load distribution
for a million point unstructured grid problem on a 512 node multicomputer.
The simulation suggests the method may be highly competitive with Lanc-
zos based approaches presented recently in [3, 20]. The third case simulates
a multicomputer operating system under conditions of random load injec-
tion. This case demonstrates that the method can effectively balance large
disturbances which occur frequently and randomly.

Parameters for the simulations are based on two scalable multicomputers.
The first is a 512 node J-machine [19] which is in use at Caltech for research
in CFD and scalable concurrent computing. The second is a hypothetical
1,000,000 node J-machine. These two design points represent a continuum
of scalable multicomputers. The method is practical at both ends of this
continuum and presumably at all points in between.

Wall clock times are based on a hand coded implementation of the method
in J-machine assembler and assumes 32 MHz processors. Each repetition of
the method requires 110 instruction cycles in 3.4375 ps. All simulations are

run with o = 0.1 and v = 3 resulting in 3 iterations between each exchange
of work.

5.1 Bow Shock Adaptation

In CFD calculations it is common to adapt a computational grid in response
to properties of a developing solution. This simulation considers an adapta-
tion that results from a bow shock in front of a Titan IV launch vehicle with
two boosters (figure 3). The grid has been adapted by doubling the density
of points in each area of the bow shock. As a result the initial disturbance
shows locations in the multicomputer where the workload has increased by
100% due to the introduction of new points. After 10 exchanges of work
the imbalance has already decreased dramatically. After 70 exchanges the
disturbance is scarcely visible. This simulation assumes a 1,000,000 proces-
sor J-machine. This example illustrates the weak persistence of low spatial
frequencies.

12
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Figure 3: Disturbance following a bow shock adaptation of a computational
grid on a million processor J-machine. First frame is the initial disturbance
resulting from the adaptation.

Subsequent. frames are separated by 10 ex-

change steps. The disturbance is reduced dramatically by the second frame.
After 70 exchange steps only weak low frequency components remain.




Rl

34.375 103.125

137.5 171.875 240.625

|'.i;._lll.l'E' {: Disturbance r]H[JIlU_i_ an initial load of a million |.u-'1||1 unstructured
computational grid onto a 512 processor J-machine. The hrst frame repre-
sents the entire grid Hﬁﬁiglwt] to a host node on the 1||1J|!i-'n::uiaj=mTL'r. This is a
point disturbance and the resulting behavior is in exact agreement with the
analvsis presented earlier in this paper. Subsequent frames are separated by
10 exchange steps, Aller 70 exchange steps Lhe workload is already roughly
balanced. A balance within | grid point was achieved after 500 exchange
steps.

5.2 Partitioning an Unstructured Grid

In |r:'1tc||l:.'| CFD il[JEJ]ii'iﬂiu[lh the static load |:é1[':|11:"11|_r=; [.H'UEJ!I.'EH has been
the subject of recent attention [3, 20]. In addition to finding an equitable
distribution of work this problem muost ohserve the additional constrain
of preserving adjacency relationships among elements of an unstructured
computational grid. The load balancing method presented in this paper can
satisfy the adjacency constraint if at each exchange step it selects l'?ir'hiill;_"__{'
candidates that observe the constraint.

his simulation madels an initial point disturbance by assigning 1,000,000
points of an unstructured computational grid to a single host node of a 512

processor J-machine (see figure 4). 1 executes the algorithm while observ-
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0.0 343.75 1031.25

1375.0 1718.75 2062.5 2406.25

Figure 5: Disturbances resulting from rapid injection of large random loads
on a million processor J-machine. After each exchange step a pont distur-
bance 15 mtroduced at a randomly chosen ProCcessor. I'he average value ol
each pomnt disturbance 15 30,000 times the initial system load average, The
interval between succeszive frames s 100 exchange steps, After 70U mmjections
Lhe worst case dise repancy was L3, 737 Lones Lhe initial load average. This
demonstrates the algorithm was balane ill_u the load faster than disturbances
were created. After load injection ceased an additional 100 repetitions with
no new disturbance reduced the worst case ll.':‘-l'l'l'ilnllc'_'. from 15,737 to 50

!'i::||;-- |]I|' i:’l;':i.ll ||.I.II| averagme,

ing the .|<|',|<'|-ru'_'-, constraint at each exchange sLep ['he initial disturbance
was reduced by 90% after 6 exchange steps in exact agreement with theory
(710.1,512) in table 1). After 59 exchange steps the worst case discrepancy
was Y949 El'i':l OIS, A fler 162 sheps the wWorst case lii.‘l. rEpancy was 200 :_'}ilf
pomts, 105 of the load average. A balance within 1 grid pont was achieved

(W11 Ii||' .'.Ih_JrI. -|.-|.

5.3 Random Load Injection




To be useful in practical contexts the method must be able to rebalance dis-
turbances faster than they arise. This simulation (figure 5) demonstrates the
behavior of the method on a 1,000,000 processor J-machine under demand-
ing conditions. An initially balanced distribution is disrupted repeatedly
by large injections of work at random locations. Injcction magnitudes are
uniformly distributed between 0 and 60,000 times the initial load average.
The simulation alternates repetitions of the algorithm with injections at ran-
domly chosen locations. After 700 repetitions and injections the worst case
discrepancy was 15,737 times the initial load average. This is less than the .
average injection magnitude of 30,000 at each repetition. This demonstrates
the method was balancing the load faster than the injections were disrupting -
it. The last random injection occured on step 700. After 100 additional ex-

change steps without intervening injections the worst case discrepancy had
reduced from 15,737 to 50 times the initial load average.

6 Summary and Discussion

This paper has demonstrated that a diffusion based load balancing method
is efficient, reliable, and scalable. It has shown through rigorous theory and
empirical simulation that the method is inexpensive for important generic
problems in CFD. This section discusses a few remaining points and indicates
future directions for this research.

An important property of the method is it’s ability to preserve adjacency
relationships among elements of a computational domain. Preserving adja-
cency permits CFD calculations to minimize their communication costs. The
method preserves adjacency if it does so at each exchange step.

To make this requirement concrete consider an unstructured computa-
tional grid for a CFD calculation. When the time comes for the load balanc-
ing method to select grid points to exchange with neighboring processors it
selects points in such a way that average pairwise distance among all points
is minimal. One way to do this is to assume that each processor represents
a volume of the computational domain and to select for exchange those grid
points which occupy the exterior of the volume. The selected points would
transfer to adjacent volumes where their neighbors in the computational grid
already reside. In order for this to be practical it must be inexpensive to iden-
tify these exterior points. In problems where the computational grid has been
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generated contiguously this is presumably a simple matter because adjacent
points will have data structures that identify their neighbors. In more general
problems where the data is not already ordered the use of priority queues
appears promising due to their O(nlogn) complexity.

It is worth noting that the method can be used to rebalance a local portion
of a computational domain without interrupting the computation which is
occurring on the rest of the domain. This can be useful in CFD problems
where some portions of the domain converge more quickly than others and
adaptation might occur locally and frequently.

This paper presented the method and analysis for a domain which has
periodic boundary conditions and is logically spherical. In practice multi-
computer meshes are rarely periodic. In our simulations we implemented
aperiodic boundaries by imposing the Neumann condition du/dz = 0 in
each direction z,y, z. This requires a simple modification to the iteration (2)
so that processors immediately outside the mesh appear to have the same
workload as processors one step inside the mesh. For example, if the proces-
sors are indexed from 1 through n in the z dimension then ug, . = ug, , and
Unt1,y,z = Un—1,y,2-

The algorithin is presented for three dimensional scalable multicomputers.
It reduces for two dimensional cases by redefining v and the iteration (2) as

follows:
Ina >1
V= |—F—
In -2 | =

1+4a
m _ _UE) &Y (D) o meD) e (me)
Yow T 1i4a " (1 T 4a) (i + oy o )

The worst case behavior of the method. is determined by disturbances of
low spatial frequency. This is the basis of the objections in [11] and a con-
ventional response would be to apply a multigrid method [11, 14]. Such a
mcthod can have logarithmic scaling in n and O(n) convergence. The anal-
ysis presented in this paper demonstrates that wall clock times can actually
decrease as n increases and this suggests considering other methods of treat-
ing the worst case disturbance. One such method would be to use very large
time steps in order to accelerate convergence of the low frequency compo-
nents. The unconditional stability of this method makes this an attractive
option. Although this would increase the error in the high frequency compo-
nents these components can be quickly corrected by local iterations. We are
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presently considering the costs associated with such iterations.

7 Appendices

This appendix presents technical justifications for statements relied upon in
the analysis.

FINITE DIFFERENCE FORMULATION OF THE HEAT EQUATION
Consider the parabolic heat equation in three dimensions

U = VU = gy + Uy + Uy, (21)
Taylor expanding in ¢ with all derivatives evaluated at (z,v, z,1)

u(z,y,z,t+dt) = u(z,y,z,t)+ udt + O(dt?)

' Y 7t+dt AR A 7t
w = (“(“’Z di w2 ))-I-O(clt)

Obtain the second order terms by expanding in spatial variables where omit-
ted coordinates are interpreted as (z,y, z,t)

uw(z +dz,- ) = u(z,-,-, )+ ude +

2 dz3
um‘% o+ thzzs = + O(da*)
u(e —de,-,-,-) = u(z,--, ) —uzdz +

dz? dz? 4

u(z + dxa B ) + u(x - d.’l:, ERE ) = 2”‘(3:) %y ) + umdxz + O(dx4)

Upg = (u(x + d.’l;, RN ) + u(‘tc;czdx7 KRR ) - QU(.'E, BN )) + O(dx2)

Similar expansions in y, z show that the heat equation can be rewritten

u(., o .,t_l_ dt) — u(., . .7t) _ (u(x + d.'l:, SN .) + u(m — dm) AR .) — 2u(.’ RN .))

dt dz?

+ u('7y + dya ) ) + u(-,y - dy’ "y ) - 2”(, R )
dy?
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dz?

From (21) the finite difference formulation is

+ (u(-, netde ) tul, 2 —dzy) — 2uly ')) + O(dt, da?,dy?, dz?)

¢4 dt) — t 1
u(m,y,z, + d?f u(m,y,z, ):'J;;(U(J?‘l'dﬂ?ayazat)"'u(m—dzayazvt)+

u(z,y + dy, z,t) + u(z,y — dy, 2,t) + u(z,y, 2 + dz, t)+
u(z,y,z — dz,t) — 6u(z, y, 2,1))

Setting o = dd% and taking the spatial terms on the right at time ¢ +d¢ yields
an unconditionally stable implicit scheme

u(z,y,z,t) = (1 + 6a)u(z,y,z,t + dt) — o [u(z + dz,y,z,t + dt)+  (22)

u(z — dz,y, z,t + dt) + u(z,y + dy, z,t + dt) + u(z,y — dy, 2,t + dt)+
u(z,y,z+dz,t + dt) + u(z,y,z — dz,t + dt))
JACOBI ITERATION TO COMPUTE A~ 'u

In order to compute solutions at successive time intervals dt we must
invert the relationship «® = Au(+%) by solving

utd) = A1, (23)

From (22) it is apparent that A has diagonal terms (1 + 6«) and six offdiago-
nals a. Let A = (D —T) where D is this diagonal. Then (D —T)u(t+4) = ()
implies u(t+#) = D=1Tu(t+4) + D=14(), This relation is satisfied by fixed
points of the Jacobi iteration

[u(t+dt)] () =D7'T [u(”dt)](m_l) + D™ 1y® (24)

The matrix D™'T has a zero diagonal and six offdiagonal terms ; tsa- D71
1

is a diagonal matrix with terms ;7. The iteration (24) is the central loop

of the method (2). Note that this iteration is everywhere convergent with
spectral radius defined by (3).

UNIT IMPULSE DERIVATION
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This section demonstrates that the eigenvector normalization constant ¢; ;

is equal to (8/n)'/2 for all eigenvectors #; ;. From (16) a necessary condition
for a normalized eigenvector is

z1 yJ zk
I = C?,J',k Z cos? <27r m) cos? <27r?> cos? (27“71—1%\)

x’y1z
1 ; k
= c?,j,kg ;ﬂ (1 + cosdx 1/3) <1 + cosdm 3}1]/3) (1 -+ cos 4%#)
1 zk
'T;’y7z

+ Z cos (4#;1%) Z cos (471'%) (l + cos 471' ok )} (25)
T Y,z

Simplify the preceding expression by the following

Lemma 1
Zcos ( 1/3> =0

Proof:

Z cos (471' ;:-f%) = Z Re (e 5175)

4 1rzl

= Reze
Re " (e W)x

47r| 4me nt/3
e ({1 - (e ,,1/3)

. 4w
1—enth3

= Re

Q.E.D.
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Repeated application of lemma (1) to equation (25) yields

1 zk
1 = C?u‘,k'g > (1 + cos 4w 1/3) (1 +cos47rT/3—)

x’yY
1 zk

= c?,j,kg [Z (1 +cos47r ) + ; (cos47r—1/§> (1 +cos47rm)]

’y’ 1 7

zk
= &z [Zl-{—z (cos47r )]
b 8 T,Y2 T,Y,2

o, 26
= Ci,j,kgn (26)

From which we conclude
8 1/2 o
Cigk = (—) Vi, gk
n
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